DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk
نویسندگان
چکیده
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.
منابع مشابه
Epigenetically Regulates Phosphodiesterase Type 4 Variant Increases Susceptibility to Prostate Carcinogenesis and Developmental Exposure to Estradiol and Bisphenol A
Early developmental perturbations have been linked to adultonset prostate pathology, including excessive exposure to estrogenic compounds; however, the molecular basis for this imprinting event is not known. An important and controversial health concern is whether low-dose exposures to hormonally active environmental estrogens, such as bisphenol A, can promote human diseases, including prostate...
متن کاملDevelopmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4.
Early developmental perturbations have been linked to adult-onset prostate pathology, including excessive exposure to estrogenic compounds; however, the molecular basis for this imprinting event is not known. An important and controversial health concern is whether low-dose exposures to hormonally active environmental estrogens, such as bisphenol A, can promote human diseases, including prostat...
متن کاملProstate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose–Response Analysis
BACKGROUND Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. OBJECTIVES A complete BPA dose-response analysis of prostate lesions across multiple prostatic lobes was co...
متن کاملP-13: Male Reproductive Organs Are at Riskfrom Environmental Hazards
Background: Male reproductive disorders that are of interest from an environmental point of view include sexual dysfunction, infertility, cryptorchidism, hypospadias and testicular cancer. Several reports suggest declining sperm counts and increase of these reproductive disorders in some areas during some time periods past 50 years. Materials and Methods: Except for testicular cancer this evide...
متن کاملDevelopmental exposures to bisphenol S, a BPA replacement, alter estrogen-responsiveness of the female reproductive tract: A pilot study
Developmental exposures to bisphenol A (BPA), an estrogen receptor agonist, can disrupt development of the female reproductive tract in rodents and non-human primates. Due to an increased public knowledge of negative health effects associated with BPA exposure, BPA has begun to be phased out of many consumer products and in some cases it has been replaced with structurally similar compounds inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016